E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Note on Computation of Relative Magnetic Helicity Flux Across the Photosphere View all abstracts by submitter

Yang Liu   Submitted: 2012-12-19 09:07

A number of investigations of the rate of relative magnetic helicity transport across the photosphere [ dH/dt|S ] have reported differences in the estimates computed from two different formulations of the relative-helicity flux density proxy [ GA ] and [ G_theta ]. There have been suggestions that [ G_theta ] is a more robust helicity-flux density proxy and that the differences in the estimates of [dH/dt|S ] are caused by biases in [ GA ], noise, and/or the boundary conditions. In this note, we prove that the differences are caused by the inconsistent choice of boundary conditions in the explicit or implicit Green?s function [ G (x, x′) ] used for computing [ GA ] and [ G_theta ] when comparing the helicity flux estimates based on [ GA ] and [ G_theta ]. When the boundary conditions in [ G ] are chosen consistetently, the two helicity-flux density proxies, [ GA ] and [ G_theta ], produce essentially identical results for the rate of helicity transport across the photosphere. They also yield essentially identical results for the rate of helicity transport of the shearing and advection terms separately. Using MHD simulation, HMI observational data, and Monte Carlo simulations of noise we show that this result is robust. Neither the shape of the active region, nor the shape of the boundary, nor data noise causes any difference in the rate of helicity transport computed via [ GA ] and [ G_theta ].

Authors: Yang Liu, Peter W. Schuck
Projects: SDO-HMI

Publication Status: Solar Physics, Accepted.
Last Modified: 2012-12-19 12:09
Go to main E-Print page  Tracing Electron Beams in the Sun's Corona with Radio Dynamic Imaging Spectroscopy  Ejections of magnetic structures above a spherical wedge driven by a convective dynamo with differential rotation  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University