E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Field Confinement in the Corona: The Role of Magnetic Helicity Accumulation View all abstracts by submitter

Mei Zhang   Submitted: 2006-02-14 20:11

A loss of magnetic field confinement is believed to be the cause of coronal mass ejections (CMEs), a major form of solar activity in the corona. The mechanisms for magnetic energy storage are crucial in understanding how a field may possess enough free energy to overcome the Aly limit and open up. Previously, we have pointed out that the accumulation of magnetic helicity in the corona plays a significant role in storing magnetic energy. In this paper, we investigate another hydromagnetic consequence of magnetic-helicity accumulation. We propose a conjecture that there is an upper bound on the total magnetic helicity that a force-free field can contain. This is directly related to the hydromagnetic property that force-free fields in unbounded space have to be self-confining. Although a mathematical proof of this conjecture for any field configuration is formidable, its plausibility can be demonstrated with the properties of several families of power-law, axisymmetric force-free fields. We put forth mathematical evidence, as well as numerical, indicating that an upper bound on the magnetic helicity may exist for such fields. Thus, the accumulation of magnetic helicity in excess of this upper bound would initiate a non-equilibrium situation, resulting in a CME expulsion as a natural product of coronal evolution.

Authors: Mei Zhang, Natasha Flyer & Boon Chye Low
Projects:

Publication Status: ApJ, 644, 575
Last Modified: 2006-06-09 07:27
Go to main E-Print page  A broad perspective on automated CME Tracking: towards higher level space weather forecasting  Solar Energetic Particles and Radio-Silent Fast Coronal Mass Ejections  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University