E-Print Archive

There are 3991 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The effect of electron beam pitch angle and density gradient on solar type III radio bursts View all abstracts by submitter

Roman Pechhacker   Submitted: 2013-01-16 05:52

1.5D particle-in-cell simulations of a hot, low density electron beam injected into magnetized, maxwellian plasma were used to further explore the alternative non-gyrotropic beam driven electromagnetic (EM) emission mechanism, first studied in Tsiklauri, Phys. Plasmas 18, 052903 (2011). Variation of beam injection angle and background density gradient showed that the emission process is caused by the perpendicular component of the beam injection current, whereas the parallel component only produces Langmuir waves, which play no role in the generation of EM waves in our mechanism. Particular emphasis was put on the case, where the beam is injected perpendicularly to the background magnetic field, as this turned off any electrostatic wave generation along the field and left a purely electromagnetic signal in the perpendicular components. The simulations establish the following key findings: (i) Initially, waves at a few ωce/γ are excited, mode converted and emitted at ~ωpe (ii) The emission intensity along the beam axis is proportional to the respective component of the kinetic energy of the beam; (iii) The frequency of the escaping EM emission is independent of the injection angle; (iv) A stronger background density gradient causes earlier emission; (v) The beam electron distribution function in phase space shows harmonic oscillation in the perpendicular components at the relativistic gyrofrequency; (vi) The requirement for cyclotron maser emission, ∂f∂v⊥>0, is fulfilled; (vii) The degree of linear polarization of the emission is strongly dependent on the beam injection angle; (viii) The generated electromagnetic emission is left-hand elliptically polarized as the pitch angle tends to 90? and (ix) The generated electromagnetic energy is of the order of 0.1% of the initial beam kinetic energy.

Authors: Roman Pechhacker and David Tsiklauri
Projects: None

Publication Status: published
Last Modified: 2013-01-16 07:36
Go to main E-Print page  Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts  Flares and magnetic non-potentiality of NOAA AR 11158  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?
The development of lower-atmosphere turbulence early in a solar flare
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks
No unique solution to the seismological problem of standing kink MHD waves
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation
Modeling of the sunspot-associated microwave emission using a new method of DEM inversion
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University