E-Print Archive

There are 3950 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The effect of electron beam pitch angle and density gradient on solar type III radio bursts View all abstracts by submitter

Roman Pechhacker   Submitted: 2013-01-16 05:52

1.5D particle-in-cell simulations of a hot, low density electron beam injected into magnetized, maxwellian plasma were used to further explore the alternative non-gyrotropic beam driven electromagnetic (EM) emission mechanism, first studied in Tsiklauri, Phys. Plasmas 18, 052903 (2011). Variation of beam injection angle and background density gradient showed that the emission process is caused by the perpendicular component of the beam injection current, whereas the parallel component only produces Langmuir waves, which play no role in the generation of EM waves in our mechanism. Particular emphasis was put on the case, where the beam is injected perpendicularly to the background magnetic field, as this turned off any electrostatic wave generation along the field and left a purely electromagnetic signal in the perpendicular components. The simulations establish the following key findings: (i) Initially, waves at a few ωce/γ are excited, mode converted and emitted at ~ωpe (ii) The emission intensity along the beam axis is proportional to the respective component of the kinetic energy of the beam; (iii) The frequency of the escaping EM emission is independent of the injection angle; (iv) A stronger background density gradient causes earlier emission; (v) The beam electron distribution function in phase space shows harmonic oscillation in the perpendicular components at the relativistic gyrofrequency; (vi) The requirement for cyclotron maser emission, ∂f∂v⊥>0, is fulfilled; (vii) The degree of linear polarization of the emission is strongly dependent on the beam injection angle; (viii) The generated electromagnetic emission is left-hand elliptically polarized as the pitch angle tends to 90? and (ix) The generated electromagnetic energy is of the order of 0.1% of the initial beam kinetic energy.

Authors: Roman Pechhacker and David Tsiklauri
Projects: None

Publication Status: published
Last Modified: 2013-01-16 07:36
Go to main E-Print page  Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts  Flares and magnetic non-potentiality of NOAA AR 11158  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University