E-Print Archive

There are 4080 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase

Hui Li   Submitted: 2006-06-15 00:35

We study the magnetic field evolution and topology of the active region NOAA 10486 before the 3B/X1.2 flare of 2003 October 26, using observational data from the French-Italian THEMIS telescope, the Michelson Doppler Imager onboard Solar and Heliospheric Observatory, the Solar Magnetic Field Telescope at Huairou Solar Observing Station, and the Transition Region and Coronal Explorer. Three dimensional (3D) extrapolation of photospheric magnetic field, assuming a potential field configuration, reveals the existence of two magnetic null points in the corona above the active region. We look at their role in the triggering of the main flare, by using the bright patches observed in TRACE 1600 {AA} images as tracers at the solar surface of energy release associated with magnetic reconnection at the null points. All the bright patches observed before the flare correspond to the low-altitude null point. They have no direct relationship with the X1.2 flare because the related separatrix is located far from the eruptive site. No bright patch corresponds to the high-altitude null point before the flare. We conclude that eruptions can be triggered without pre-eruptive coronal null point reconnection, and the presence of null points is not a sufficient condition for the occurrence of flares. We propose that this eruptive flare results from the loss of equilibrium due to persistent flux emergence, continuous photospheric motion and strong shear along the magnetic neutral line. The opening of the coronal field lines above the active region should be a byproduct of the large 3B/X1.2 flare rather than its trigger.

Projects: None

Publication Status: Solar Physics, (accepted)
Last Modified: 2006-06-16 11:07
Go to main E-Print page  Relations between concurrent hard X-ray sources in solar flares  Photospheric Magnetic Field Properties of Flaring Versus Flare-Quiet Active Regions. III. Magnetic Charge Topology Models  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University