E-Print Archive

There are 4021 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Parametric survey of longitudinal prominence oscillation simulations View all abstracts by submitter

Qingmin Zhang   Submitted: 2013-04-16 02:58

{Longitudinal filament oscillations recently attracted more and more attention, while the restoring force and the damping mechanisms are still elusive.} {In this paper, we intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their triggering mechanism, dominant restoring force, and damping mechanisms.} {With the MPI-AMRVAC code, we carry out radiative hydrodynamic numerical simulations of the longitudinal prominence oscillations. Two types of perturbations, i.e., impulsive heating at one leg of the loop and an impulsive momentum deposition are introduced to the prominence, which then starts to oscillate. We study the resulting oscillations for a large parameter scan, including the chromospheric heating duration, initial velocity of the prominence, and field line geometry.} {It is found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. An extensive parameter survey results in a scaling law, showing that the period of the oscillation, which weakly depends on the length and height of the prominence, and the amplitude of the perturbations, scales with sqrt{R/g_odot}, where R represents the curvature radius of the dip, and g_odot is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes non-negligible for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Compared to heat conduction, the radiative cooling is the dominant factor leading to the damping. A scaling law for the damping timescale is derived, i.e., ausim l1.63 D0.66w-1.21v0-0.30, showing strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. It is also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.}

Authors: Q. M. Zhang, P .F. Chen, C. Xia, R. Keppens, H. S. Ji
Projects: None

Publication Status: A&A in press
Last Modified: 2013-04-17 12:23
Go to main E-Print page  High-Cadence and High-Resolution Halpha Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS  Coronal loop physical parameters from the analysis of multiple observed transverse oscillations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University