E-Print Archive

There are 4036 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
High-Cadence and High-Resolution Hα Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS View all abstracts by submitter

Na Deng   Submitted: 2013-04-16 07:46

We present an unprecedented high-resolution ha imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76~cm Dunn Solar Telescope on 2011 October 22 in active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.1arcpix image scale), cadence (4.8 s) and spectral (0.1~AA stepsize) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in 3D fan-spine reconnection but so far has been rarely observed. During the flare impulsive phase, we define ``core'' and ``halo'' structures in the observed ribbon based on IBIS narrowband images in the ha line wing and line center. Examining the ha emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring ha line profiles. These characteristics include: broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (sim30 s) and cooling (sim14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 kms) between discrete magnetic elements implying reconnection involving different flux tubes. We observe a very high temporal correlation (gtrsim0.9) between the integrated ha and HXR emission during the flare impulsive phase. A short time delay (4.6 s) is also found in the ha emission spikes relative to HXR bursts. The ionization timescale of the cool chromosphere and the extra time taken for the electrons to travel to the remote ribbon site may contribute to this delay.

Authors: Na Deng, Alexandra Tritschler, Ju Jing, Xin Chen, Chang Liu, Kevin Reardon, Carsten Denker, Yan Xu, and Haimin Wang
Projects: Hinode/SOT,National Solar Observatory (Sac Peak),RHESSI,SDO-AIA,SDO-HMI

Publication Status: The Astrophysical Journal, accepted
Last Modified: 2013-04-17 12:22
Go to main E-Print page  HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO   Parametric survey of longitudinal prominence oscillation simulations  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University