E-Print Archive

There are 4290 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups View all abstracts by submitter

Valery Pipin   Submitted: 2013-04-16 10:48

We obtain the latitude-time distribution of the averaged tilt angle of solar bipoles. For large bipoles, which are mainly bipolar sunspot groups, the spatially averaged tilt angle is positive in the Northern solar hemisphere and negative in the Southern, with modest variations during course of the solar cycle. We consider the averaged tilt angle to be a tracer for a crucial element of the solar dynamo, i.e. the regeneration rate of poloidal large-scale magnetic field from toroidal. The value of the tilt obtained crudely corresponds to a regeneration factor corresponding to about 10% of r.m.s. velocity of solar convection. These results develop findings of Kosovichev and Stenflo (2012) concerning Joy's law, and agree with the usual expectations of solar dynamo theory. Quite surprisingly, we find a pronounced deviation from these properties for smaller bipoles, which are mainly solar ephemeral regions. They possess tilt angles of approximately the same absolute value, but of opposite sign compared to that of the large bipoles. Of course, the tilt data for small bipoles are less well determined than those for large bipoles; however they remain robust under various modifications of the data processing.

Authors: A.Tlatov, E.Illarionov, D.Sokoloff, V.Pipin
Projects: None

Publication Status: accepted in MNRAS
Last Modified: 2013-04-17 12:21
Go to main E-Print page  Determining Heating Rates in Reconnection Formed Flare Loops of the M8.0 Flare on 2005 May 13  HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO   Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University