E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Study of the Reconnection Rate in Solar Flares Observed with YOHKOH/SXT View all abstracts by submitter

Kaori Nagashima   Submitted: 2006-07-23 08:29

We report a statistical study of flares observed with the Soft X-Ray Telescope (SXT) onboard Yohkoh in the year 2000. We measure physical parameters of 77 flares, such as the temporal scale, size, and magnetic flux density and find that the sizes of flares tend to be distributed more broadly as the GOES class becomes weaker and that there is a lower limit of magnetic flux density that depends on the GOES class. We also examine the relationships among these parameters and find weak correlation between the temporal and spatial scales of the flares. We estimate reconnection inflow velocity, coronal Alfvén velocity, and reconnection rate using the observed values. The inflow velocities are distributed from a few km s-1 to several tens of km s-1, and the Alfvén velocities in the corona are in the range from 103 to 104 km s-1. Hence, the reconnection rate is 10-3 to 10-2. We find that the reconnection rate in a flare tends to decrease as the GOES class of the flare increases. This value is within 1 order of magnitude of the theoretical maximum value predicted by the Petschek model, although the dependence of the reconnection rate on the magnetic Reynolds number tends to be stronger than that in the Petschek model.

Authors: Kaori Nagashima & Takaaki Yokoyama
Projects: Yohkoh-SXT

Publication Status: ApJ, 647, 654 (astro-ph/0605712)
Last Modified: 2006-08-18 19:47
Go to main E-Print page  Torus instability  Observations Supporting the Role of Magnetoconvection in Energy Supply to the Quiescent Solar Atmosphere  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University