E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Fast magnetohydrodynamic waves in a two-slab coronal structure: collective behaviour View all abstracts by submitter

Manuel Luna   Submitted: 2006-09-27 05:14

Aims.We study fast magnetohydrodynamic waves in a system of two coronal loops modeled as smoothed, dense plasma slabs in a uniform magnetic field. This allows us to analyse in a simple configuration the collective behaviour of the structure due to the interaction between the slabs. Methods.We first calculate the normal modes of the system and find analytical expressions for the dispersion relation of the two-slab configuration. Next, we study the time-dependent problem of the excitation of slab oscillations by numerically solving the initial value problem. We investigate the behaviour of the system for several shapes of the initial disturbances. Results.The symmetric mode respect to the centre of the structure is the only trapped mode for all distances between the slabs while the antisymmetric mode is leaky for small slab separations. Nevertheless, there is a wide range of slab separations for which the fundamental symmetric and antisymmetric trapped modes are allowed and have very close frequencies. These modes are excited according to the parity of the initial perturbation. Conclusions.We find that for any initial disturbance the slabs oscillate with the normal modes of the coupled slab system, which are different from the modes of the individual slabs. We show that it is possible to excite the symmetric and antisymmetric trapped modes at the same time. This kind of excitation can produce the beating phenomenon, characterised by a continuous exchange of energy between the individual slabs.

Authors: M. Luna, J. Terradas, R. Oliver and J. L. Ballester
Projects: None

Publication Status: published
Last Modified: 2006-09-27 09:14
Go to main E-Print page  On the causes of Hard X-ray asymmetry in Solar Flares  Solar Source Regions for 3He-rich Solar Energetic Particle Events Identified Using Imaging Radio, Optical, and Energetic Particle Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University