E-Print Archive

There are 4099 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Relations between strong high-frequency microwave bursts and proton events View all abstracts by submitter

Victor Grechnev   Submitted: 2013-08-13 01:23

Proceeding from close association between solar eruptions, flares, shock waves, and CMEs, we analyze relations between bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990-2012, on the one hand, and solar energetic particle (SEP) events, on the other hand. Most west to moderately east solar events with strong bursts at 35 GHz produced near-Earth proton enhancements of J(E > 100 MeV) > 1 pfu. The strongest and hardest those caused ground level enhancements. There is a general, although scattered, correspondence between proton enhancements and peak fluxes at 35 GHz, especially pronounced if the 35 GHz flux exceeds 104 sfu and the microwave peak frequency is high. These properties indicate emission from numerous high-energy electrons in very strong magnetic fields suggesting a high rate of energy release in the flare-CME formation process. Flaring above the sunspot umbra appears to be typical of such events. Irrespective of the origin of SEPs, these circumstances demonstrate significant diagnostic potential of high-frequency microwave bursts and sunspot-associated flares for space weather forecasting. Strong prolonged bursts at 35 GHz promptly alert to hazardous SEP events with hard spectra. A few exceptional events with moderate bursts at 35 GHz and strong proton fluxes look challenging and should be investigated.

Authors: V. Grechnev, N. Meshalkina, I. Chertok, V. Kiselev
Projects: GOES Particles,GOES X-rays ,Hinode/SOT,Neutron Monitors,Nobeyama Radioheliograph,Owens Valley Solar Array,SDO-AIA,SoHO-MDI,TRACE,Yohkoh-HXT

Publication Status: PASJ, accepted
Last Modified: 2013-08-13 11:02
Go to main E-Print page  Microwave Negative Bursts as Indications of Reconnection between Eruptive Filaments and Large-Scale Coronal Magnetic Environment  Study of Rapid Formation of a Delta Sunspot Associated with the 2012 July 2 C7.4 Flare Using High-resolution Observations of  New Solar Telescope  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University