E-Print Archive

There are 4620 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Relations between strong high-frequency microwave bursts and proton events View all abstracts by submitter

Victor Grechnev   Submitted: 2013-08-13 01:23

Proceeding from close association between solar eruptions, flares, shock waves, and CMEs, we analyze relations between bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990-2012, on the one hand, and solar energetic particle (SEP) events, on the other hand. Most west to moderately east solar events with strong bursts at 35 GHz produced near-Earth proton enhancements of J(E > 100 MeV) > 1 pfu. The strongest and hardest those caused ground level enhancements. There is a general, although scattered, correspondence between proton enhancements and peak fluxes at 35 GHz, especially pronounced if the 35 GHz flux exceeds 104 sfu and the microwave peak frequency is high. These properties indicate emission from numerous high-energy electrons in very strong magnetic fields suggesting a high rate of energy release in the flare-CME formation process. Flaring above the sunspot umbra appears to be typical of such events. Irrespective of the origin of SEPs, these circumstances demonstrate significant diagnostic potential of high-frequency microwave bursts and sunspot-associated flares for space weather forecasting. Strong prolonged bursts at 35 GHz promptly alert to hazardous SEP events with hard spectra. A few exceptional events with moderate bursts at 35 GHz and strong proton fluxes look challenging and should be investigated.

Authors: V. Grechnev, N. Meshalkina, I. Chertok, V. Kiselev
Projects: GOES Particles,GOES X-rays ,Hinode/SOT,Neutron Monitors,Nobeyama Radioheliograph,Owens Valley Solar Array,SDO-AIA,SoHO-MDI,TRACE,Yohkoh-HXT

Publication Status: PASJ, accepted
Last Modified: 2013-08-13 11:02
Go to main E-Print page  Microwave Negative Bursts as Indications of Reconnection between Eruptive Filaments and Large-Scale Coronal Magnetic Environment  Study of Rapid Formation of a Delta Sunspot Associated with the 2012 July 2 C7.4 Flare Using High-resolution Observations of  New Solar Telescope  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
High-altitude Spider-type Prominence above the Magnetic Null Point
Non-Neutralized Electric Currents as a Proxy for Eruptive Activity in Solar Active Regions
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University