E-Print Archive

There are 4100 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Determination of the Abundances of Subcoronal He and of Solar Flare Accelerated He-3 and He-4 from Gamma-Ray Spectroscopy View all abstracts by submitter

Natalie Mandzhavidze   Submitted: 1999-11-04 18:01

A series of narrow gamma-ray lines at 0.339, 0.429, 0.478, 0.937, 1.00, 1.04, 1.05, and 1.08 result almost exclusively from the bombardment of ambient He, O, and Fe by accelerated α particles and He-3 nuclei. Study of these lines, combined with the Fe-56 line at 0.847 MeV and the O-16 line at 6.129 MeV, allows the determination of the abundances of α particles and He-3 accelerated in solar flares and of the ambient He in the gamma-ray production region in the solar atmosphere. Using the Solar Maximum Mission/GRS and Compton Gamma Ray Observatory/OSSE data for 20 flares, we find that with significance not exceeding about 2.5 sigma there are flares that exhibit α particle abundance enhancements α p>0.1), show evidence for the presence of accelerated He-3, and indicate ambient He abundance enhancements. In some cases the accelerated He-3/He-4 ~ 1 , and for essentially all of the flares He-3/He-4 could be 0.1, consistent with our earlier conclusion that in both impulsive and gradual flares the particles that interact and produce gamma rays are always accelerated by the same mechanism that operates in impulsive flares, namely, stochastic accelerati- acceleration through gyroresonant wave-particle interactions. The ambient He abundance enhancements suggest that there are chromospheric regions where He/O exceeds its photospheric value, a result that could have important implications for solar atmospheric dynamics.

Authors: N. Mandzhavidze, R. Ramaty, B. Kozlovsky
Projects:

Publication Status: ApJ, 1999, 518, 918
Last Modified: 1999-11-04 18:01
Go to main E-Print page  High-resolution Observations of Plasma Jets in the Solar Corona
  Hard X-Ray Timing Experiments with HESSI
  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University