E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
An Updated View of Solar Eruptive Flares and Development of Shocks and CMEs: History of the 2006 December 13 GLE-Productive Extreme Event View all abstracts by submitter

Victor Grechnev   Submitted: 2013-08-13 21:20

An extreme 2006 December 13 event marked the onset of the Hinode era being the last major flare in the solar cycle 23 observed with NoRH and NoRP. The event produced a fast CME, strong shock, and big particle event responsible for GLE70. We endeavor to clarify relations between eruptions, shock wave, and the flare, and to shed light on a debate over the origin of energetic protons. One concept relates it with flare processes. Another one associates acceleration of ions with a bow shock driven by a CME at (2-4)R. The latter scenario is favored by a delayed particle release time after the flare. However, our previous studies have established that a shock wave is typically excited by an impulsively erupting magnetic rope (future CME core) during the flare rise, while the outer CME surface evolves from an arcade whose expansion is driven from inside. Observations of the 2006 December 13 event reveal two shocks following each other, whose excitation scenario contradicts the delayed CME-driven bow-shock hypothesis. Actually, the shocks developed much earlier, and could accelerate protons still before the flare peak. Then, the two shocks merged into a single stronger one and only decelerated and dampened long afterwards.

Authors: V. Grechnev, V. Kiselev, A. Uralov, N. Meshalkina, A. Kochanov
Projects: GOES X-rays ,Hinode/SOT,Hinode/XRT,Nobeyama Radioheliograph,RHESSI,SoHO-EIT,SoHO-MDI,SoHO-LASCO,SXI

Publication Status: Accepted for publication in PASJ
Last Modified: 2013-08-14 08:28
Go to main E-Print page  A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. II. CMEs, Shock Waves, and Drifting Radio Bursts  Three-dimensional MHD modeling of propagating disturbances in fan-like coronal loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University