E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Propagating Waves Transverse to the Magnetic Field in a Solar Prominence View all abstracts by submitter

Manuel Luna   Submitted: 2013-09-09 04:06

We report an unusual set of observations of waves in a large prominence pillar which consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT) (in Ca II and Hα lines), Sac Peak (in Hα, Hβ and Na-D3 lines), THEMIS (?T"lescope H"liographique pour l? Etude du Magn?tisme et des Instabilit"s Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data is consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the 4 hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s-1, a period about 300 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.

Authors: B. Schmieder, T.A. Kucera, K. Knizhnik, M. Luna, A. Lopez-Ariste, and D.Toot
Projects: Hinode/SOT,SDO-AIA,THEMIS/MTR

Publication Status: Accepted for publication in The Astrophysical Journal
Last Modified: 2013-09-09 10:12
Go to main E-Print page  Energy release from impacting prominence material following the 2011 June 7 eruption  SWAP Observations of the Long-Term, Large-Scale Evolution of the EUV Solar Corona  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University