E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Anti-parallel EUV flows observed along active region filament threads with Hi-C View all abstracts by submitter

Caroline Alexander   Submitted: 2013-06-24 07:25

Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool EUV lines (e.g., 304A) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of `counter-steaming' flows has previously been inferred from these cool plasma observations but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193A). In this work we present observations of an active region filament observed with Hi-C that exhibits anti-parallel flows along adjacent filament threads. Complementary data from SDO/AIA and HMI are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s-1) and gives an indication of the resolvable thickness of the individual strands (0.8'' ± 0.1''). The temperature distribution of the plasma flows was estimated to be log T(K) = 5.45 ± 0.10 using EM loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows nor measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

Authors: Caroline E. Alexander, Robert W. Walsh, Stephane Regnier, Jonathan Cirtain, Amy R. Winebarger, Leon Golub, Ken Kobayashi, Simon Platt, Nick Mitchell, Kelly Korreck, Bart DePontieu, Craig DeForest, Mark Weber, Alan Title, Sergey Kuzin
Projects: Other,SDO-AIA

Publication Status: Published in ApJ, 775, L32
Last Modified: 2013-09-13 09:55
Go to main E-Print page  Damping of coronal loop kink oscillations due to mode conversion  Anti-phase signature of flare generated transverse loop oscillations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University