E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Microwave and EUV Observations of an Erupting Filament and Associated Flare and CME View all abstracts by submitter

Spiros Patsourakos   Submitted: 2013-09-14 05:11

A filament eruption was observed with the Siberian Solar Radio Telescope (SSRT) on June 23 2012, starting around 06:40 UT, beyond the West limb. The filament could be followed in SSRT images to heights above 1 Rs, and coincided with the core of the CME, seen in LASCO C2 images. We discuss briefly the dynamics of the eruption: the top of the filament showed a smooth acceleration up to an apparent velocity of 1100 km s-1. Images behind the limb from STEREO-A show a two ribbon flare and the interaction of the main filament, located along the primary neutral line, with an arch-like structure, oriented in the perpendicular direction. The interaction was accompanied by strong emission and twisting motions. The microwave images show a low temperature component, a high temperature component associated with the interaction of the two filaments and another high temperature component apparently associated with the top of flare loops. We computed the differential emission measure from the high temperature AIA bands and from this the expected microwave brightness temperature; for the emission associated with the top of flare loops the computed brightness was 35% lower than the observed.

Authors: Alissandrakis, C. E.; Kochanov, A. A.; Patsourakos, S.; Altyntsev, A. T.; Lesovoi, S. V.; Lesovoya, N. N.
Projects: None

Publication Status: PASJ, Oct 2013, in press
Last Modified: 2013-09-14 17:27
Go to main E-Print page  Active region formation through the negative effective magnetic pressure instability  Exploring the capabilities of the Anti-Coincidence Shield of the INTEGRAL spectrometer to study solar flares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University