E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Coronal Heating and Photospheric Turbulence Parameters: Observational Aspects View all abstracts by submitter

Valentyna Abramenko   Submitted: 2006-10-17 11:15

In this study, the soft X-ray luminosity of the solar corona, measured by the Yohkoh spacecraft for 104 well-developed and decaying active regions, is compared to the magnetic field parameters determined from SOHO MDI high-resolution magnetograms. We calculate and compare (1) two area-independent characteristics of the magnetic field: the index (α) of the magnetic power spectrum, E(k)~k-α, and the magnetic energy dissipation rate (ε̄/η), which is a proxy for the energy of random footpoint motions induced by turbulent convection in the photosphere and below; and (2) four area-independent parameters of the soft X-ray emission: the area-normalized flux in Yohkoh Al.1 and AlMgMn channels, and the emission measure and temperature of the coronal plasma. Here we report that the area-normalized soft X-ray flux correlates with both the power index α (Pearson correlation coefficient ρ=0.72/Al.1 and 0.73/AlMgMn) and the magnetic energy dissipation rate ε̄/η (ρ=0.68/Al.1 and 0.70/AlMgMn). Also, both magnetic parameters are well-correlated with the logarithm of the emission measure (ρ=0.72) and the logarithm of temperature [ρ=0.59/α and 0.63/(ε̄/η)]. Our results present strong observational support to those coronal heating models that rely on random footpoint motions as an energy source to heat the corona above active regions.

Authors: V.I. Abramenko, Alexei P. Pevtsov and R. Romano
Projects: SoHO-MDI

Publication Status: The Astrophysical Journal, Volume 646, Issue 1, pp. L81-L84
Last Modified: 2006-10-17 18:52
Go to main E-Print page  The Rate of Emergence of Magnetic Dipoles in Coronal Holes and Adjacent Quiet-Sun Regions  The temperature map of the loop and coronal sources of an occulted flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University