E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range View all abstracts by submitter

Alexey Kochanov   Submitted: 2013-10-16 23:14

The Siberian Solar Radio Telescope (SSRT) is a solar-dedicated directly-imaging interferometer observing the Sun at 5.7 GHz. The SSRT operates in the two-dimensional mode since 1996. The imaging principle of the SSRT restricts its opportunities in observations of very bright flare sources, while it is possible to use `dirty' images in studies of low-brightness features, which do not overlap with side lobes from bright sources. The interactive CLEAN technique routinely used for the SSRT data provides imaging of active regions but consumes much time and efforts and does not reveal low-brightness features below the CLEAN threshold. The newly developed technique combines the CLEAN routine with the directly-imaging capability of the SSRT and provides clean images with an enhanced dynamic range automatically. These elaborations considerably extend the range of tasks, which can be solved with the SSRT. We show some examples of the present opportunities of the SSRT and compare its data with the images produced by the Nobeyama Radioheliograph at 17 GHz as well as observations in different spectral ranges.

Authors: Alexey Kochanov, Sergey Anfinogentov, Dmitry Prosovetsky, George Rudenko, Victor Grechnev
Projects: None

Publication Status: PASJ (accepted)
Last Modified: 2013-10-17 14:37
Go to main E-Print page  Variation of proton flux profiles with the observer's latitude in simulated gradual SEP events   On the sensitivity of the GOES flare classification to properties of the electron beam in the thick target model  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University