E-Print Archive

There are 4525 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
EIT and TRACE responses to flare plasma View all abstracts by submitter

Durgesh Tripathi   Submitted: 2006-11-06 09:38

Aims: To understand the contribution of active region and flare plasmas to the 195 A channels of SOHO/EIT (Extreme-ultraviolet Imaging Telescope) and TRACE (Transition Region and Coronal Explorer). Methods: We have analysed an M8 flare simultaneously observed by the Coronal Diagnostic Spectrometer (CDS), EIT, TRACE and RHESSI. We obtained synthetic spectra for the flaring region and an outer region using the differential emission measures (DEM) of emitting plasma based on CDS and RHESSI observations and the CHIANTI atomic database. We then predicted the EIT and TRACE count rates. Results: For the flaring region, both EIT and TRACE images taken through the 195 A filter are dominated by Fe XXIV (formed at about 20 MK). However, in the outer region, the emission was primarily due to the Fe XII, with substantial contributions from other lines. The average count rate for the outer region was within 25% the observed value for EIT, while for TRACE it was a factor of two higher. For the flare region, the predicted count rate was a factor of two (in case of EIT) and a factor of three (in case of TRACE) higher than the actual count rate. Conclusions: During a solar flare, both TRACE and EIT 195 A channels are found to be dominated by Fe XXIV emission. Reasonable agreement between predictions and observations is found, however some discrepancies need to be further investigated.

Authors: D. Tripathi, G. Del Zanna, H. E. Mason, C. Chifor
Projects: SoHO-EIT,SoHO-CDS,TRACE

Publication Status: Accepted for publication in A&A letters
Last Modified: 2006-11-06 09:46
Go to main E-Print page  Spatial Damping of Linear Compressional Magnetoacoustic Waves in Quiescent Prominences  Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University