E-Print Archive

There are 3946 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Decametric N burst: a consequence of the interaction of two coronal mass ejections View all abstracts by submitter

Pascal Demoulin   Submitted: 2006-11-08 04:15

Radio emissions of electron beams in the solar corona and interplanetary space are tracers of the underlying magnetic configuration and of its evolution. We analyse radio observations from the Culgoora and Wind/WAVES spectrographs, in combination with SOHO/LASCO and SOHO/MDI data, to understand the origin of a type N burst originating from NOAA AR 10540 on January 20, 2004, and its relationship with type II and type III emissions. All bursts are related to the flares and the CME analysed in a previous paper (Goff et al., 2006). A very unusual feature of this event was a decametric type N burst, where a type III-like burst, drifting toward low frequencies (negative drift), changes drift first to positive, then again to negative. At metre wavelengths, i.e. heliocentric distances < 1.5 Rs, these bursts are ascribed to electron beams bouncing in a closed loop. Neither U nor N bursts are expected at decametric wavelengths because closed quasi-static loops are not thought to extend to distances >> 1.5 Rs. We take the opportunity of the good multi-instrument coverage of this event to analyse the origin of type N bursts in the high corona. Reconnection of the expanding ejecta with the magnetic structure of a previous CME, launched about 8 hours earlier, injects electrons in the same manner as with type III bursts but into open field lines having a local dip and apex. The latter shape was created by magnetic reconnection between the expanding CME and neighbouring (open) streamer field lines. This particular flux tube shape in the high corona, between 5-10 Rs, explains the observed type N burst. Since the required magnetic configuration is only a transient phenomenon formed by reconnection, severe timing and topological constraints are present to form the observed decametric N-burst. They are therefore expected to be rare features.

Authors: Demoulin, P., Klein, K.L., Goff, C.P., van Driel-Gesztelyi, L., Culhane, J.L., Mandrini, C.H., Matthews, S.A., Harra, L.K.
Projects:

Publication Status: In press, Solar Physics
Last Modified: 2006-11-23 08:56
Go to main E-Print page  The temporal evolution of coronal loops observed by GOES-SXI  Significant Results from SUMER/SOHO  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University