E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase

qiang hu   Submitted: 2006-11-22 15:28

We develop an approach to deriving three-dimensional non-force free coronal magnetic field from vector magnetograms. Based on the principle of Minimum Dissipation Rate, a general non-force free magnetic field is expressed as superposition of one potential field, and two constant-α (linear) force free fields. Each is extrapolated from their bottom boundary data, providing the normal component only. The constant α parameters are distinct, and determined by minimizing the deviations between the numerically computed and measured transverse magnetic field at the bottom boundary. The boundary conditions required are at least two layers of vector magnetograms, one at the photospheric level and the other the chromospheric level, presumably. We apply it to a few analytic test cases, especially to two non-linear force free cases examined by Schrijver et al. (2006). We find that for one case with small α parameters, the quantitative measures of the quality of our result are better than the median values of those from a set of non-linear force free methods. The reconstructed magnetic field configuration is valid up to a vertical height of the transverse scale. For the other cases, the results remain valid to a lower vertical height due to the limitations of the linear force free field solver. As based on the Fast Fourier Transform algorithm, our method is much faster and easy to implement. We discuss the potential usefulness of our method and its limitations.


Publication Status: Solar Physics (submitted; under revision)
Last Modified: 2006-12-01 12:06
Go to main E-Print page  MHD seismology of coronal loops using the period and damping of quasi-mode kink oscillations  A Multiple flare scenario where the classic long duration flare was not the source of a CME  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University