E-Print Archive

There are 4102 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Results from the Study of an M7.6 Flare and its Associated CME View all abstracts by submitter

Hui Li   Submitted: 2006-12-06 18:29

An M7.6 flare was well observed on 2003 October 24 in active region 10486 by a few instruments and satellites, including GOES, TRACE, SOHO, RHESSI and NoRH. Multi-wavelength study shows that this flare underwent two episodes. During the first episode, only a loop-top source of <40 keV was observed in reconstructed RHESSI images, which showed shrinkage with a velocity of 12 - 14 km s-1 in a period of about 12 minutes. During the second process, in addition to the loop-top source, two footpoint sources were observed in energy channel of as high as ~ 200 keV. One of them showed fast propagation along one of the two TRACE 1600 {AA} flare ribbons and the 195 {AA} loop footpoints, which could be explained by successive magnetic reconnection. The associated CME showed a mass pickup process with decreasing center-of-mass velocity. The decrease of the CME kinetic energy and the increase of its potential energy lead to an almost constant total energy during the CME propagation. Our results reveal that the flare and its associated CME have comparable energy content, and the flare is of non-thermal property.

Authors: Hui Li and Youping Li
Projects: None

Publication Status: Advances in Space Research (accepted)
Last Modified: 2006-12-07 12:02
Go to main E-Print page  Leakage of photospheric acoustic waves into non-magnetic solar atmosphere  Halo Coronal Mass Ejections and Configuration of the Ambient Magnetic Fields  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University