E-Print Archive

There are 3872 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Recent theoretical and observational developments in magnetic helicity studies View all abstracts by submitter

Pascal Demoulin   Submitted: 2006-12-15 09:29

Magnetic helicity quantifies how the magnetic field is sheared and twisted compared to its lowest energy state (potential field). Such stressed magnetic fields are usually observed in association with flares, eruptive filaments, and coronal mass ejections (CMEs). Magnetic helicity plays a key role in magnetohydrodynamics because it is almost preserved on a timescale less than the global diffusion time scale. Its conservation defines a constraint to the magnetic field evolution. Only relatively recently, scientists have realized that magnetic helicity can be computed from observations, and methods have been derived to bridge the gap between theory and observations. At the photospheric level, the rate (or flux) of magnetic helicity can be computed from the evolution of longitudinal magnetograms. The coronal helicity is estimated from magnetic extrapolation, while the helicity ejected in magnetic clouds (interplanetary counter-part of CMEs) is derived through modelling of in-situ magnetic field measurements. Using its conserved property, a quantitative link between phenomena observed in the corona and then in the interplanetary medium has been achieved.

Authors: Démoulin, Pascal
Projects: SoHO-MDI

Publication Status: Advances in Space Research, in press
Last Modified: 2006-12-15 10:37
Go to main E-Print page  Stereoscopy basics for the STEREO mission  Coronal prominence structure and dynamics: A magnetic flux rope interpretation  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University