E-Print Archive

There are 4177 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Study of the solar wind-magnetosphere coupling on different time scales View all abstracts by submitter

Aslam OPM   Submitted: 2013-11-23 06:42

Solar wind-magnetosphere coupling, its causes and consequences have been studied for the last several decades. However, the assessment of continuously changing behaviour of the sun, plasma and field flows in the interplanetary space and their influence on geomagnetic activity is still a subject of intense research. Search for the best possible coupling function is also important for space weather prediction. We utilise four geomagnetic indices (ap, aa, AE and Dst) as parameters of geomagnetic activity level in the earth's magnetosphere. In addition to these indices, we utilise various solar wind plasma and field parameters for the corresponding periods. We analyse the geomagnetic activity and plasma/field parameters at yearly, half-yearly, 27-day, daily, 3-hourly, and hourly time resolutions. Regression analysis using geomagnetic and solar wind data of different time resolutions, over a continuous long period, and at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that two parameters BV/1000(mV/m) and BV2(mV/s) are highly correlated with the all four geomagnetic activity indices not only at any particular time scale but at different time scales. It probably suggests for some role of the fluctuations/variations in interplanetary electric potential, its spacial variation [i.e., interplanetary electric field BV (mV/m)] and/or time variation [BV2 (mV/s)], in influencing the reconnection rate.

Authors: Badruddin and Aslam, O.P.M.
Projects: None

Publication Status: Published in Planetary and Space Science
Last Modified: 2013-11-25 08:32
Go to main E-Print page  Long-Period Oscillations of Sunspots With SOHO/MDI Data  Solar Modulation of Cosmic Rays during the Declining and Minimum Phases of Solar Cycle 23: Comparison with Past Three Solar Cycles  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Rapid Evolution of Type II Spicules Observed in Goode Solar Telescope On-Disk Hα Images
Diagnostics of plasma ionisation using torsional Alfvén waves
Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes
Electron Beams Cannot Directly Produce Coronal Rain
Magnetic Structure of an Erupting Filament
The Distribution of Time Delays Between Nanoflares in Magnetohydrodynamic Simulations
Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371
NVST observations of collision-induced apparent fan-shaped jets
Cosmic ray interactions in the solar atmosphere
A correlation in the waiting-time distributions of solar flares
Alternative Models of Zebra Patterns in the Event on June 21, 2011
Torsional slow-mode oscillations discovered in the magnetic free energy during solar flares
Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach
The time step constraint in radiation hydrodynamics
Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns
The New 2018 Version of the Meudon Spectroheliograph
Longitudinal filament oscillations enhanced by two C-class flares
Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare
Meteospace, a New Instrument for Solar Survey at the Calern Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University