E-Print Archive

There are 4053 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Study of the solar wind-magnetosphere coupling on different time scales View all abstracts by submitter

Aslam OPM   Submitted: 2013-11-23 06:42

Solar wind-magnetosphere coupling, its causes and consequences have been studied for the last several decades. However, the assessment of continuously changing behaviour of the sun, plasma and field flows in the interplanetary space and their influence on geomagnetic activity is still a subject of intense research. Search for the best possible coupling function is also important for space weather prediction. We utilise four geomagnetic indices (ap, aa, AE and Dst) as parameters of geomagnetic activity level in the earth's magnetosphere. In addition to these indices, we utilise various solar wind plasma and field parameters for the corresponding periods. We analyse the geomagnetic activity and plasma/field parameters at yearly, half-yearly, 27-day, daily, 3-hourly, and hourly time resolutions. Regression analysis using geomagnetic and solar wind data of different time resolutions, over a continuous long period, and at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that two parameters BV/1000(mV/m) and BV2(mV/s) are highly correlated with the all four geomagnetic activity indices not only at any particular time scale but at different time scales. It probably suggests for some role of the fluctuations/variations in interplanetary electric potential, its spacial variation [i.e., interplanetary electric field BV (mV/m)] and/or time variation [BV2 (mV/s)], in influencing the reconnection rate.

Authors: Badruddin and Aslam, O.P.M.
Projects: None

Publication Status: Published in Planetary and Space Science
Last Modified: 2013-11-25 08:32
Go to main E-Print page  Long-Period Oscillations of Sunspots With SOHO/MDI Data  Solar Modulation of Cosmic Rays during the Declining and Minimum Phases of Solar Cycle 23: Comparison with Past Three Solar Cycles  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University