E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models View all abstracts by submitter

Wei Liu   Submitted: 2006-12-21 01:12

The main theme of this thesis is the investigation of the physics of acceleration and transport of particles in solar flares, and their thermal and nonthermal radiative signatures. The observational studies, using hard X-rays (HXRs) observed by the RHESSI mission, concentrate on four flares, which support the classical magnetic reconnection model of solar flares in various ways. In the X3.9 flare occurring on 11/03/2003, there is a monotonic upward motion of the loop top (LT) source accompanied by a systematic increase in the separation of the footpoint (FP) sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 event exhibits rarely observed two coronal sources. The two sources (with almost identical spectra) show energy-dependent structures, with higher-energy emission being close together. This suggests that reconnection takes place within the region between the sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the FPs correlates with the mean magnetic field. The two FPs show asymmetric HXR fluxes, which is qualitatively consistent with the magnetic mirroring effect. The M1.7 flare on 11/13/2003 reveals evidence of evaporation directly imaged by RHESSI for the first time, in which emission from the legs of the loop appears at intermediate energies. The emission centroid moves toward the LT as time proceeds, indicating an increase of density in the loop. The theoretical modeling of this work combines the stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by nonthermal electrons. We find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of conduction are tested in the presence of hydrodynamic flows.

Authors: Wei Liu (Adviser: Vahé Petrosian)
Projects: RHESSI

Publication Status: 2006, Ph.D. Thesis, Stanford University (10 chapters, 224 pages)
Last Modified: 2006-12-21 09:54
Go to main E-Print page  Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Demoulin equilibrium  The origin of the reversed granulation in the solar photosphere  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University