E-Print Archive

There are 4100 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Test of the Hemisphere Rule of Magnetic Twist in Solar Active Regions Using the Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Data View all abstracts by submitter

Yang Liu   Submitted: 2014-01-25 12:01

Magnetic twist in solar active regions has been found to have a hemispheric preference in sign (hemisphere rule): negative in the northern hemisphere and positive in the southern. The preference reported in previous studies ranges greatly, from sim 58% to 82%. In this study, we examine this hemispheric preference using vector magnetic field data taken by HMI and find that 75% pm 7% of 151 active regions studied obey the hemisphere rule, well within the preference range in previous studies. If the sample is divided into two groups,-,active regions having magnetic twist and writhe of the same sign and having opposite signs,-,the strength of the hemispheric preference differs substantially: ( 64% pm 11% ) for the former group and ( 87% pm 8% ) for the latter. This difference becomes even more significant in a sub-sample of 82 active regions having a simple bipole magnetic configuration: ( 56% pm 16% ) for the active regions having the same signs of twist and writhe, and 93% with lower and upper confidence bounds of 80% and 98% for the active regions having the opposite signs. The error reported here is a 95% confidence interval. This may suggest that, prior to emergence of magnetic tubes, either the sign of twist does not have a hemispheric preference or the twist is relatively weak.

Authors: Y. Liu, J. T. Hoeksema, X. Sun
Projects: SDO-HMI

Publication Status: ApJL accepted
Last Modified: 2014-01-28 12:39
Go to main E-Print page  The generation and damping of propagating MHD kink waves in the solar atmosphere  Investigating the Dynamics and Density Evolution of Returning Plasma Blobs from the 2011 June 7 Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University