E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs View all abstracts by submitter

Rositsa Miteva   Submitted: 2014-02-27 01:54

We study the influence of the large-scale interplanetary magneticfield configuration on the solar energetic particles (SEPs) asdetected at different satellites near Earth and on the correlation oftheir peak intensities with the parent solar activity. We selected SEPevents associated with X- and M-class flares at western longitudes, inorder to ensure good magnetic connection to Earth. These events wereclassified into two categories according to the global interplanetarymagnetic field (IMF) configuration present during the SEP propagationto 1 AU: standard solar wind or interplanetary coronal mass ejections(ICMEs). Our analysis shows that around 20 % of all particle eventsare detected when the spacecraft is immersed in an ICME. Thecorrelation of the peak particle intensity with the projected speed ofthe SEP-associated coronal mass ejection is similar in the two IMFcategories of proton and electron events, ≈ 0.6. The SEP eventswithin ICMEs show stronger correlation between the peak protonintensity and the soft X-ray flux of the associated solar flare, withcorrelation coefficient r=0.67±0.13, compared to the SEP eventspropagating in the standard solar wind, r=0.36±0.13. The difference ismore pronounced for near-relativistic electrons. The main reason forthe different correlation behavior seems to be the larger spread ofthe flare longitude in the SEP sample detected in the solar wind ascompared to SEP events within ICMEs. We discuss to what extentobservational bias, different physical processes (particle injection,transport, etc.), and the IMF configuration can influence therelationship between SEPs and coronal activity.

Authors: Miteva, R.; Klein, K.-L.; Malandraki, O.; Dorrian, G.
Projects: GOES Particles

Publication Status: Solar Physics (accepted)
Last Modified: 2014-03-07 03:57
Go to main E-Print page  Rayleigh-Taylor instabilities with sheared magnetic fields  Radio Signatures of Solar Energetic Particles During the 23rd Solar Cycle  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University