E-Print Archive

There are 4499 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic helicity and energy spectra of a solar active region View all abstracts by submitter

Axel Brandenburg   Submitted: 2014-03-23 11:56

We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm-1, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k-11/3 power law at large wavenumbers, which implies a k-5/3 spectrum for the modulus of the current helicity. A k-5/3 spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm-1, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.

Authors: Hongqi Zhang, Axel Brandenburg, D.D. Sokoloff
Projects: None

Publication Status: Astrophys. J. Lett. 784, L45 (2014)
Last Modified: 2014-03-24 09:30
Go to main E-Print page  25 Years of Self-Organized Criticality: Solar and Astrophysics  The formation heights of coronal shocks from 2D density and Alfv?n speed maps  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University