E-Print Archive

There are 4177 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Similarities and Distinctions in Cosmic-Ray Modulation during Different Phases of Solar and Magnetic Activity Cycles View all abstracts by submitter

Aslam OPM   Submitted: 2013-12-09 22:47

We study the solar-activity and solar-polarity dependence of galactic cosmic-ray intensity (CRI) on the solar and heliospheric parameters playing a significant role in solar modulation. We utilize the data for cosmic-ray intensity as measured by neutron monitors, solar activity as measured by sunspot number (SSN), interplanetary plasma/field parameters, solar-wind velocity [V] and magnetic field [B], as well as the tilt of the heliospheric current sheet [{Lambda}] and analyse these data for Solar Cycles 20 - 24 (1965 - 2011). We divide individual Solar Cycles into four phases, i.e. low, high, increasing, and decreasing solar activity. We perform regression analysis to calculate and compare the CRI-response to changes in different solar/interplanetary parameters during (i) different phases of solar activity and (ii) similar activity phases but different polarity states. We find that the CRI-response is different during negative (A<0) as compared to positive (A>0) polarity states not only with SSN and {Lambda} but also with B and V. The relative CRI-response to changes in various parameters, in negative (A<0) as compared to positive (A>0) state, is solar-activity dependent; it is ~2 to 3 times higher in low solar activity, ~1.5 to 2 times higher in moderate (increasing/decreasing) activity, and it is nearly equal in high solar-activity conditions. Although our results can be ascribed to preferential entry of charged particles via the equatorial/polar regions of the heliosphere as predicted by drift models, these results also suggest that we should look for, any polarity-dependent response of solar wind and transport parameters in modulating CRI in the heliosphere.

Authors: Aslam, O.P.M., and Badruddin
Projects:

Publication Status: Solar Physics, 289, 2247-2268, 2014.
Last Modified: 2014-04-07 10:56
Go to main E-Print page  Fluctuations in the interplanetary electric potential and energy coupling between the solar-wind and the magnetosphere  Similarities and Distinctions in Cosmic-Ray Modulation during Different Phases of Solar and Magnetic Activity Cycles  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Rapid Evolution of Type II Spicules Observed in Goode Solar Telescope On-Disk Hα Images
Diagnostics of plasma ionisation using torsional Alfvén waves
Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes
Electron Beams Cannot Directly Produce Coronal Rain
Magnetic Structure of an Erupting Filament
The Distribution of Time Delays Between Nanoflares in Magnetohydrodynamic Simulations
Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371
NVST observations of collision-induced apparent fan-shaped jets
Cosmic ray interactions in the solar atmosphere
A correlation in the waiting-time distributions of solar flares
Alternative Models of Zebra Patterns in the Event on June 21, 2011
Torsional slow-mode oscillations discovered in the magnetic free energy during solar flares
Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach
The time step constraint in radiation hydrodynamics
Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns
The New 2018 Version of the Meudon Spectroheliograph
Longitudinal filament oscillations enhanced by two C-class flares
Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare
Meteospace, a New Instrument for Solar Survey at the Calern Observatory

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University