E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic flux concentrations in a polytropic atmosphere View all abstracts by submitter

Axel Brandenburg   Submitted: 2014-05-03 00:28

Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers for which the density scale height is constant throughout. We now study the validity of earlier conclusions about the size and growth rate of magnetic structures in the case of polytropic layers, which scale height decreases sharply towards the surface. To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential function known as the q-exponential. Now, the top of the polytropic layer shifts with the polytropic index such that the scale height at some reference height is always the same. We use both mean-field and direct numerical simulations of forced stratified turbulence to determine the resulting flux concentrations. Magnetic structures begin to form at a depth where magnetic field strength is about 3-4% the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic one the growth rates decreases for structures deeper down. For vertical fields, magnetic structures of super-equipartition strengths are formed because such fields survive downward advection, unlike NEMPI under horizontal magnetic fields. The horizontal cross-section of such structures is approximately circular. Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux concentrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.

Authors: I. R. Losada, A. Brandenburg, N. Kleeorin, I. Rogachevskii
Projects: None

Publication Status: Astron. Astrophys. 564, A2 (2014)
Last Modified: 2014-05-03 11:45
Go to main E-Print page  3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum  High Resolution Observations of Chromospheric Jets in Sunspot Umbra  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University