E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Statistical relationship between the succeeding solar flares detected by the RHESSI satellite View all abstracts by submitter

Norbert Gyenge   Submitted: 2014-05-06 03:18

The Reuven Ramaty High Energy Solar Spectroscopic Imager has observed more than 80 000 solar energetic events since its launch on 2002 February 12. Using this large sample of observed flares, we studied the spatiotemporal relationship between succeeding flares. Our results show that the statistical relationship between the temporal and spatial differences of succeeding flares can be described as a power law of the form R(t) ∼ t^p with p = 0.327 ? 0.007. We discuss the possible interpretations of this result as a characteristic function of a supposed underlying physics. Different scenarios are considered to explain this relation, including the case where the connectivity between succeeding events is realized through a shock wave in the post Sedov?Taylor phase or where the spatial and temporal relationship between flares is supposed to be provided by an expanding flare area in the sub-diffusive regime. Furthermore, we cannot exclude the possibility that the physical process behind the statistical relationship is the reordering of the magnetic field by the flare or it is due to some unknown processes.

Authors: L. G. Balazs; N. Gyenge; M. B. Korsos; T. Baranyi; E. Forgacs-Dajka; I. Ballai
Projects: RHESSI

Publication Status: accepted
Last Modified: 2014-05-06 15:18
Go to main E-Print page  Infrared Solar Physics  3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University