E-Print Archive

There are 4594 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Super-hot (T > 30 MK) Thermal Plasma in Solar Flares View all abstracts by submitter

Amir Caspi   Submitted: 2010-08-19 16:41

The Sun offers a convenient nearby laboratory to study the physical processes of particle acceleration and impulsive energy release in magnetized plasmas that occur throughout the universe, from planetary magnetospheres to black hole accretion disks. Solar flares are the most powerful explosions in the solar system, releasing up to 1032-1033 ergs over only 100-1,000 seconds. These events can accelerate electrons up to hundreds of MeV and can heat plasma to tens of MK, exceeding ~40 MK in the most intense flares. The accelerated electrons and the hot plasma each contain tens of percent of the total flare energy, indicating an intimate link between particle acceleration, plasma heating, and flare energy release. X-ray emission is the most direct signature of these processes; accelerated electrons emit hard X-ray bremsstrahlung as they collide with the ambient atmosphere, while hot plasma emits soft X-rays from both bremsstrahlung and excitation lines of highly-ionized atoms. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observes this emission from ~3 keV to ~17 MeV with unprecedented spectral, spatial, and temporal resolution, providing the most precise measurements of the X-ray flare spectrum and enabling the most accurate characterization of the X-ray-emitting hot and accelerated electron populations. RHESSI observations show that ''super-hot'' temperatures exceeding ~30 MK are common in large flares but are achieved almost exclusively by X-class events and appear to be strictly associated with coronal magnetic field strengths exceeding ~170 Gauss; these results suggest a direct link between the magnetic field and heating of super-hot plasma, and that super-hot flares may require a minimum threshold of field strength and overall flare intensity. Imaging and spectroscopic observations of the 2002 July 23 X4.8 event show that the super-hot plasma is both spectrally and spatially distinct from the usual ~10-20 MK plasma observed in nearly all flares, and is located above rather than at the top of the loop containing the cooler plasma. It exists with high density even during the pre-impulsive phase, which is dominated by coronal non-thermal emission with negligible footpoints, suggesting that particle acceleration and plasma heating are intrinsically related but that, rather than the traditional picture of chromospheric evaporation, the origins of super-hot plasma may be the compression and subsequent thermalization of ambient material accelerated in the reconnection region above the flare loop, a physically-plausible process not detectable with current instruments but potentially observable with future telescopes. Explaining the origins of super-hot plasma would thus ultimately help to understand the mechanisms of particle acceleration and impulsive energy release in solar flares.

Authors: A. Caspi
Projects: RHESSI

Publication Status: Published -- Ph.D. Dissertation (Univ. of California, Berkeley); arXiv: 1105.1889
Last Modified: 2014-05-30 14:01
Go to main E-Print page  SPECTROSCOPIC ANALYSIS OF AN EIT WAVE/DIMMING OBSERVED BY HINODE/EIS   Thin current sheets caused by plasma flow gradients in space and astrophysical plasma  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University