E-Print Archive

There are 4451 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Radio Observations of the 20 January 2005 X-class Flare View all abstracts by submitter

Alexander Hillaris   Submitted: 2014-06-10 13:55

We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration, and magnetic restructuring. As a variety of energetic-particle accelerators and sources of radio bursts are present, in the flare - ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of ARTEMIS-IV - Wind/ Waves - HiRAS, with 2000 MHz - 20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR, and γ-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the Standard Flare - CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.

Authors: Bouratzis, C.; Preka-Papadema, P.; Hillaris, A.; Tsitsipis, P.; Kontogeorgos, A.; Kurt, V. G.; Moussas, X..
Projects: None

Publication Status: Solar Physics, Volume 267, Issue 2, pp.343-359
Last Modified: 2014-06-11 09:54
Go to main E-Print page  ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event  On the relationship of shock waves to flares and coronal mass ejections  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University