E-Print Archive

There are 4100 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting View all abstracts by submitter

Karel Schrijver   Submitted: 2007-01-05 15:29

Solar flares result from some electromagnetic instability that occurs within regions of relatively strong magnetic field in the Sun's atmosphere. The processes that enable and trigger these flares remain topics of intense study and debate. I analyze observations of 289 X- and M-class flares and over 2,500 active-region magnetograms to discover (1) that large flares, without exception, are associated with the rise from within the Sun of intense magnetic fibrils with pronounced high-gradient polarity separation lines, while (2) the free energy that emerges with these fibrils is converted into flare energy in a broad spectrum of flare magnitudes that may well be selected at random from a power-law distribution up to a maximum value. This maximum is proportional to the total unsigned flux R within ~15 Mm of strong-field, high-gradient polarity-separation lines which are a characteristic appearance of electrical currents emerging through the photosphere. Measurement of R is readily automated, and R can therefore be used effectively for flare forecasting. The probability for major flares to occur within 24 hr of the measurement of R approaches unity for active regions with the highest values of R around 2x1021 Mx. For regions with R<1019 Mx, no M- or X-class flares occur within a day.

Authors: Carolus J. Schrijver
Projects: TRACE

Publication Status: ApJL, in press
Last Modified: 2007-01-08 10:00
Go to main E-Print page  Energetics of Solar Coronal Mass Ejections  SOLIS-VSM Solar Vector Magnetograms  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University