E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting View all abstracts by submitter

Karel Schrijver   Submitted: 2007-01-05 15:29

Solar flares result from some electromagnetic instability that occurs within regions of relatively strong magnetic field in the Sun's atmosphere. The processes that enable and trigger these flares remain topics of intense study and debate. I analyze observations of 289 X- and M-class flares and over 2,500 active-region magnetograms to discover (1) that large flares, without exception, are associated with the rise from within the Sun of intense magnetic fibrils with pronounced high-gradient polarity separation lines, while (2) the free energy that emerges with these fibrils is converted into flare energy in a broad spectrum of flare magnitudes that may well be selected at random from a power-law distribution up to a maximum value. This maximum is proportional to the total unsigned flux R within ~15 Mm of strong-field, high-gradient polarity-separation lines which are a characteristic appearance of electrical currents emerging through the photosphere. Measurement of R is readily automated, and R can therefore be used effectively for flare forecasting. The probability for major flares to occur within 24 hr of the measurement of R approaches unity for active regions with the highest values of R around 2x1021 Mx. For regions with R<1019 Mx, no M- or X-class flares occur within a day.

Authors: Carolus J. Schrijver
Projects: TRACE

Publication Status: ApJL, in press
Last Modified: 2007-01-08 10:00
Go to main E-Print page  Energetics of Solar Coronal Mass Ejections  SOLIS-VSM Solar Vector Magnetograms  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University