E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The magnetic helicity injected by shearing motions View all abstracts by submitter

Pascal Demoulin   Submitted: 2001-12-19 08:43

Photospheric shearing motions are one of the possible ways to inject magnetic helicity into the corona. We explore their efficiency as a function of their particular properties and those of the magnetic field configuration. Based on the work of M.A. Berger, we separate the helicity injection into two terms: twist and writhe. For shearing motions concentrated between the centres of two magnetic polarities the helicity injected by twist and writhe add up, while for spatially more extended shearing motions, such as differential rotation, twist and writhe helicity have opposite signs and partially cancel. This implies that the amount of injected helicity can change in sign with time even if the shear velocity is time independent. We confirm the amount of helicity injected by differential rotation in a bipole in the two particular cases studied by DeVore (2000), and further explore the parameter space on which this injection depends. For a given latitude, tilt and magnetic flux, the generation of helicity is slightly more efficient in young active regions than in decayed ones (up to a factor 2). The helicity injection is mostly affected by the tilt of the AR with respect to the solar equator. The total helicity injected by shearing motions, with both spatial and temporal coherence, is at most equivalent to that of a twisted flux tube having the same magnetic flux and a number of turns of 0.3. In the solar case, where the motions have not such global coherence, the injection of helicity is expected to be much smaller, while for differential rotation this maximum value reduces to 0.2 turns. We conclude that shearing motions are a relatively inefficient way to bring magnetic helicity into the corona (compared to the helicity carried by a significantly twisted flux tube).

Authors: Démoulin P., van Driel-Gesztelyi L., Mandrini C.H., Lòpez Fuentes M. & Aulanier, G.

Publication Status: Solar Physics, in press
Last Modified: 2001-12-19 08:43
Go to main E-Print page   What is the source of the magnetic helicity shed by CMEs.  The long-term helicity budget of AR 7978   Temperature Isotropization in Solar Flare Plasmas due to the Electron Firehose Instability  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University