E-Print Archive

There are 4036 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Structures of Interplanetary Magnetic Flux Ropes and Comparison with Their Solar Sources View all abstracts by submitter

qiang hu   Submitted: 2014-07-21 20:34

During the process of magnetic flux rope ejection, magnetic reconnection is essential to release the flux rope. The question remains: how does the magnetic reconnection change the flux rope structure? In this work, we continue with the original study by Qiu et al. (2007) by using a larger sample of flare-CME-ICME events to compare properties of ICME/MC flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of helicity of the solar source region judged from the geometry of postflare loops. Remarkably, we find that about one half of the 18 magnetic flux ropes, most of them being associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, of up to >=5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linear force free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

Authors: Qiang Hu, Jiong Qiu, B. Dasgupta, A. Khare, and G. M. Webb

Publication Status: accepted by ApJ
Last Modified: 2014-08-08 09:08
Go to main E-Print page  On the Long-Term Modulation of Solar Differential Rotation  LOFAR tied-array imaging of Type III solar radio bursts  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University