E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Superflare occurrence and energies on G-, K- and M-type dwarfs View all abstracts by submitter

Axel Brandenburg   Submitted: 2014-09-25 21:24

Kepler data from G-, K- and M-type stars are used to study conditions that lead to superflares with energies above 1034 { erg}. From the 117,661 stars included, 380 show superflares with a total of 1690 such events. We study whether parameters, like effective temperature or the rotation rate, have any effect on the superflare occurrence rate or energy. With increasing effective temperature we observe a decrease in the superflare rate, which is analogous to the previous findings of a decrease in dynamo activity with increasing effective temperature. For slowly rotating stars, we find a quadratic increase of the mean occurrence rate with the rotation rate up to a critical point, after which the rate decreases linearly. Motivated by standard dynamo theory, we study the behavior of the relative starspot coverage, approximated as the relative brightness variation. For faster rotating stars, an increased fraction of stars shows higher spot coverage, which leads to higher superflare rates. A turbulent dynamo is used to study the dependence of the Ohmic dissipation as a proxy of the flare energy on the differential rotation or shear rate. The resulting statistics of the dissipation energy as a function of dynamo number is similar to the observed flare statistics as a function of the inverse Rossby number and shows similarly strong fluctuations. This supports the idea that superflares might well be possible for solar-type G stars.

Authors: Candelaresi, S., Hillier, A., Maehara, H., Brandenburg, A., & Shibata, K.
Projects: None

Publication Status: Astrophys. J. 792, 67 (2014)
Last Modified: 2014-09-26 10:14
Go to main E-Print page  The Formation of Kappa-Distribution Accelerated Electron Populations in Solar Flares  Comment on ``Detection and characterization of 0.5--8 MeV neutrons near Mercury: Evidence for a solar origin  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University