E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Nonlinear slow magnetoacoustic waves in coronal plasma structures View all abstracts by submitter

Valery Nakariakov   Submitted: 2014-11-02 06:27

Context. There is abundant observational evidence of longitudinal waves in the plasma structures of the solar corona. These essentially compressive waves are confidently interpreted as slow magnetoacoustic waves. The use of the slow waves in plasma diagnostics and estimating their possible contribution to plasma heating and acceleration require detailed theoretical modelling. Aims. We investigate the role of obliqueness and magnetic effects in the evolution of slow magnetoacoustic waves, also called tube waves, in field-aligned plasma structures. Special attention is paid to the wave damping caused by nonlinear steepening. Methods. We considered an untwisted straight axisymmetric field-aligned plasma cylinder and analysed the behaviour of the slow magnetoacoustic waves that are guided by this plasma structure. We adopted a thin flux tube approximation. We took into account dissipation caused by viscosity, resistivity and thermal conduction, and nonlinearity. Effects of stratification and dispersion caused by the finite radius of the flux tube were neglected. Results. We derive the Burgers-type evolutionary equation for tube waves in a uniform plasma cylinder. Compared with a plane acoustic wave, the formation of shock fronts in tube waves is found to occur at a larger distance from the source. In addition, tube waves experience stronger damping. These effects are most pronounced in plasmas with the parameter beta at about or greater than unity. In a low-beta plasma, the evolution of tube waves can satisfactorily be described with the Burgers equation for plane acoustic waves.

Authors: A. N. Afanasyev, V.M. Nakariakov
Projects: None

Publication Status: A&A, accepted
Last Modified: 2014-11-03 07:57
Go to main E-Print page  On Polar Magnetic Field Reversal and Surface Flux Transport During Solar Cycle 24  Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University