E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
High Dispersion Spectroscopy of Solar-type Superflare Stars. I. Temperature, Surface Gravity, Metallicity, and v \sin i View all abstracts by submitter

Yuta Notsu   Submitted: 2014-12-29 19:04

We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS, and measured the stellar parameters of them. These 50 targets were selected from the solar-type (G-type main sequence) superflare stars that we had discovered from the Kepler photometric data. As a result of these spectroscopic observations, we found that more than half (34 stars) of our 50 targets have no evidence of binary system. We then estimated effective temperature (T{eff}), surface gravity (log g), metallicity ([Fe/H]), and projected rotational velocity (v\sin i) of these 34 superflare stars on the basis of our spectroscopic data. The accuracy of our estimations is higher than that of Kepler Input Catalog (KIC) values, and the differences between our values and KIC values ((Δ T{eff}){rms} ~ 219K, (Δ log g){rms} ~ 0.37 dex, and (Δ{[Fe/H]}){rms} ~ 0.46 dex) are comparable to the large uncertainties and systematic differences of KIC values reported by the previous researches. We confirmed that the estimated T{eff} and log g values of the 34 superflare stars are roughly in the range of solar-type stars. In particular, these parameters and the brightness variation period (P0) of 9 stars are in the range of ``Sun-like" stars (5600≤ T{eff}≤ 6000K, log g≥4.0, and P0>10 days). Five of the 34 target stars are fast rotators (v \sin i ≥ 10km s-1), while 22 stars have relatively low v \sin i values (v \sin i<5km s-1). These results suggest that stars whose spectroscopic properties similar to the Sun can have superflares, and this supports the hypothesis that the Sun might cause a superflare.

Authors: Yuta Notsu, Satoshi Honda, Hiroyuki Maehara, Shota Notsu, Takuya Shibayama, Daisaku Nogami, Kazunari Shibata
Projects: Other

Publication Status: accepted for publication in PASJ
Last Modified: 2014-12-31 13:43
Go to main E-Print page  High Dispersion Spectroscopy of Solar-type Superflare Stars. II. Stellar Rotation, Starspots, and Chromospheric Activities  The process of data formation for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University