E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The energetics of a global shock wave in the low solar corona View all abstracts by submitter

David Long   Submitted: 2015-01-08 04:10

As the most energetic eruptions in the solar system, coronal mass ejections (CMEs) can produce shock waves at both their front and flanks as they erupt from the Sun into the heliosphere. However, the amount of energy produced in these eruptions, and the proportion of their energy required to produce the waves, is not well characterised. Here we use observations of a solar eruption from 2014 February 25 to estimate the energy budget of an erupting CME and the globally-propagating "EIT wave" produced by the rapid expansion of the CME flanks in the low solar corona. The "EIT wave" is shown using a combination of radio spectra and extreme ultraviolet images to be a shock front with a Mach number greater than one. Its initial energy is then calculated using the Sedov-Taylor blast-wave approximation, which provides an approximation for a shock front propagating through a region of variable density. This approach provides an initial energy estimate of ≈2.8x1031 ergs to produce the "EIT wave", which is approximately 10% the kinetic energy of the associated CME (shown to be ≈2.5x1032 ergs). These results indicate that the energy of the "EIT wave" may be significant and must be considered when estimating the total energy budget of solar eruptions.

Authors: David M. Long, Deborah Baker, David R. Williams, Eoin P. Carley, Peter T. Gallagher, Pietro Zucca
Projects: Hinode/EIS,SDO-AIA

Publication Status: Accepted for publication in ApJ
Last Modified: 2015-01-09 12:50
Go to main E-Print page  Soft X-ray emission in kink-unstable coronal loops  Prominence Activation by Coronal Fast Mode Shock  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University