E-Print Archive

There are 4506 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after CMEs View all abstracts by submitter

Sarah Gibson   Submitted: 2007-03-07 12:41

It is generally accepted that the energy that drives coronal mass ejections (CMEs) is magnetic in origin. Sheared and twisted coronal fields can store free magnetic energy which ultimately is released in the CME. We explore the possibility of the specific magnetic configuration of a magnetic flux rope of field lines that twist about an axial field line. The flux rope model predicts coronal observables, including heating along forward or inverse S-shaped, or sigmoid, topological surfaces. Therefore, studying the observed evolution of such sigmoids prior to, during, and after the CME gives us crucial insight into the physics of coronal storage and release of magnetic energy. In particular, we consider (1) soft-X-ray sigmoids, both transient and persistent; (2) The formation of a current sheet and cusp-shaped post-flare loops below the CME; (3) Reappearance of sigmoids after CMEs; (4) Partially erupting filaments; (5) Magnetic cloud observations of filament material.

Authors: S. E. Gibson, Y. Fan, T. Toeroek, and B. Kliem
Projects: None

Publication Status: Space Science Reviews, 124, 131, 2007
Last Modified: 2007-03-07 12:50
Go to main E-Print page  Partially-ejected flux ropes: implications for space weather  Tilts and polarity separation in the sunspot groups and active regions at the ascending and descending phases of the cycle 23  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University