E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Statistical Study of Two Classes of CMEs View all abstracts by submitter

Yong-Jae Moon   Submitted: 2002-08-07 21:42

A comprehensive statistical study is performed to address the question whether two classes of coronal mass ejections (CMEs) exist. A total of 3217 CME events observed by SOHO/LASCO in 1996 to 2000 have been analyzed. We have examined the distributions of CMEs according to speed and acceleration, respectively, and investigated the correlation between speed and acceleration of CMEs. This statistical analysis is conducted for two subsets containing those CMEs which show a temporal and spatial association either with GOES X-ray solar flares or with eruptive filaments. %The number of CMEs in deceleration is comparable to the %number of CMEs in acceleration. We have found that CMEs associated with flares have a higher median speed than those associated with eruptive filaments and that the median speed of CMEs associated with strong flares is higher than that of weak-flare-associated CMEs. The distribution of CME acceleration shows a conspicuous peak near zero, not only for the whole data set, but also for the two subsets associated either with solar flares or with eruptive filaments. However, we have confirmed that the CMEs associated with major flares tend to be more decelerated than the CMEs related to eruptive filaments. The fraction of flare-associated CMEs has a tendency to increase with the CME speed, whereas the fraction of eruptive-filament-associated CMEs tends to decrease with the CME speed. This result supports the concept of two CME classes. We have found a possibility of two components in the CME speed distribution for both the CME data associated with flares larger than M1 class and the CME data related with limb flares. Our results suggest that the apparent single-peak distribution of CME speed can be attributed to the projection effect and possibly to abundance of small flares too. We also note that there is a possible correlation between the speed of CMEs and the time-integrated X-ray flux of the CME-associated limb flares.

Authors: Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.
Projects:

Publication Status: ApJ, in press
Last Modified: 2002-08-07 21:49
Go to main E-Print page  Impulsive Variation of Magnetic Helicity Change Rate associated with Eruptive Flares  Twist Propagation in H-alpha Surges  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University