E-Print Archive

There are 4099 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Dissipative instability in partially ionised prominence plasmas View all abstracts by submitter

Istvan Ballai   Submitted: 2015-03-26 16:10

We investigate the nature of dissipative instability at the boundary (seen here as tangential discontinuity) between the viscous corona and the partially ionised prominence plasma in the incompressible limit. The importance of the partial ionisation is investigated in terms of the ionisation fraction. Matching the solutions for the transversal component of the velocity and total pressure at the interface between the prominence and coronal plasmas, we derive a dispersion relation whose imaginary part describes the evolution of the instability. Results are obtained in the limit of weak dissipation. Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are lower than the Kelvin-Helmholtz instability threshold. While viscosity tends to destabilise the plasma, the effect of partial ionisation (through the Cowling resistivity) will act towards stabilising the interface. For ionisation degrees closer to a neutral gas the interface will be unstable for larger values of equilibrium flow. The same principle is assumed when studying the appearance of instability at the interface between prominences and dark plumes. The unstable mode appearing in this case has a very small growth rate and dissipative instability cannot explain the appearance of flows in plumes. The present study improves our understanding of the complexity of dynamical processes at the interface of solar prominences and solar corona, and the role partial ionisation can have on the stability of the plasma. Our results clearly show that the problem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of solar prominences.

Authors: I. Ballai, R. OIiver, M. Alexandrou
Projects: None

Publication Status: in press, Astron. & Astrophys.
Last Modified: 2015-03-27 14:07
Go to main E-Print page  Intensity and Doppler Velocity Oscillations in Pore Atmospheres  Spatially resolved observations of a coronal type II radio burst with multiple lanes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University