E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Quiet Sun Network at Sub-Arcsecond Resolution: VAULT Observations and Radiative Transfer Modeling of Cool Loops View all abstracts by submitter

Spiros Patsourakos   Submitted: 2007-05-02 08:58

One of the most enigmatic regions of the solar atmosphere is the transition region (TR), corresponding to plasmas with temperatures intermediate of the cool, few thousand K, chromosphere and the hot, few million K, corona. The traditional view is that the TR emission originates from a thin thermal interface in hot coronal structures, connecting their chromosphere with their corona. This paradigm fails badly for cool plasmas (approx T < {10}5 K) since it predicts emission orders of magnitude less than what it is observed. It was therefore proposed that the ''missing'' TR emission could originate from tiny, isolated from the hot corona, cool loops at TR temperatures. A major problem in investigating this proposal is the very small sizes of the hypothesized cool loops. Here, we report the first spatially resolved observations of sub-arcsec-scale loop-like structures seen in the Ly α line made by the Very High Angular Resolution Ultraviolet Telescope (VAULT). The sub-arcsec (approx 0.3 arcsec) resolution of VAULT allows us to directly view and resolve loop-like structures in the quiet Sun network. We compare the observed intensities of these structures with simplified radiative transfer models of cool loops. The reasonable agreement between the models and the observations indicates that an explanation of the observed fine structure in terms of cool loops is plausible.

Authors: S. Patsourakos, P. Gouttebroze, and A. Vourlidas
Projects: None

Publication Status: ApJ, 2007, in press, July 20, v664n 1 issue
Last Modified: 2007-05-02 11:04
Go to main E-Print page  Converging motion of conjugate flaring kernels during two large solar flares  MHD oscillations in solar and stellar coronae: Current results and perspectives  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University