E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Asteroseismic Signatures of Small Convective Cores View all abstracts by submitter

Travis S. Metcalfe   Submitted: 2007-05-21 10:23

We present an analytical study of the effect of small convective cores on the oscillations of solar-like pulsators. Based on an asymptotic analysis of the wave equation near the center of the star, we derive an expression for the perturbations to the frequencies of radial modes generated by a convective core and discuss how these perturbations depend on the properties of the core. Moreover, we propose a diagnostic tool to isolate the predicted signature of the core, constructed from a particular combination of the oscillation frequencies, and we validate this tool with simulated data. We also show that the proposed tool can be applied to the pulsation data soon expected from satellite missions such as CoRoT and Kepler to constrain the amplitude of the discontinuity in the sound speed at the edge of the convective core, the ratio between the sound speed and the radius at this same location, and the stellar age.

Authors: M.S. Cunha and T.S. Metcalfe
Projects: None

Publication Status: ApJ (accepted)
Last Modified: 2007-05-21 10:48
Go to main E-Print page  Comparison of Five Numerical Codes for Automated Tracing of Coronal Loops  Numerical simulations of fast and slow coronal mass ejections  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University