E-Print Archive

There are 4100 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Radio Emissions from Solar Active Regions View all abstracts by submitter

Jeongwoo Lee   Submitted: 2007-06-27 09:51

Solar active region coronae are known for strong magnetic fields permeating tenuous plasma which makes them an ideal astronomical laboratory for magnetohydrodynamics research. It is, however, relatively less known that this physical condition also permits a very efficient radiation mechanism, gyro-resonant emission, produced by hot electrons gyrating in the coronal magnetic field. As a resonant mechanism, gyro-emission produces high enough opacity to fully reveal the coronal temperature, and is concentrated at a few harmonics of the local gyrofrequency to serve as an excellent indicator of the magnetic field. In addition, the polarization of the ubiquitous free-free emission and a phenomenon of depolarization due to mode coupling extend the magnetic field diagnostic to a wide range of coronal heights. The ability to measure the coronal temperature and magnetic field without the complications arising in other radiative inversion problems is a particular advantage for the active region radio emissions available only at these wavelengths. This article reviews the efforts for understanding these radiative processes, and utilizing them as diagnostic tools in addressing a number of critical issues involved with active regions.

Authors: Jeongwoo Lee
Projects: None

Publication Status: Space Science Reviews (in press)
Last Modified: 2007-06-27 10:49
Go to main E-Print page  Hard X-ray Intensity Distribution Along H-alpha Ribbons  Flare magnetic reconnection and relativistic particles in the 2003 October 28 event  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University