E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic Field Strength in the Solar Corona from Type II Band Splitting View all abstracts by submitter

Jeongwoo Lee   Submitted: 2007-06-27 12:03

The phenomenon of band splitting in type II bursts can be a unique diagnostic for the magnetic field in the corona, which is, however, inevitably sensitive to the ambient density. We apply this diagnostic to the CME-flare event on 2004 August 18, for which we are able to locate the propagation of the type II burst and determine the ambient coronal electron density by other means. We measured the width of the band splitting on a dynamic spectrum of the bursts observed with the Green Bank Solar Radio Burst Spectrometer (GBSRBS), and converted it to the Alfvén Mach number under the Rankine-Hugoniot relation. We then determine the Alfvén speed and magnetic field strength using the coronal background density and shock speed measured with the MLSO/MK4 coronameter. In this way we find that the shock compression ratio is in the range of 1.5-1.6, the Alfvénic Mach number is 1.4-1.5, the Alfvén speed is 550-400 km s-1, and finally the magnetic field strength decreases from 1.3 G to 0.4 G while the shock passes from 1.6R to 2.1R. The magnetic field strength derived from the type II spectrum is finally compared with the potential field source surface (PFSS) model for further evaluation of this diagnostic.

Authors: K.-S. Cho, J. Lee, D. E. Gary, Y.-J. Moon, and Y. D. Park
Projects: SoHO-MDI

Publication Status: 2007 ApJ (in press)
Last Modified: 2007-06-27 13:31
Go to main E-Print page  Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation  A Study of CME and Type II Burst Kinematics Based on Coronal Density Measurement  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University