E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Triggering Mechanism for the Filament Eruption on 2005 September 13 in Active Region NOAA 10808 View all abstracts by submitter

Kaori Nagashima   Submitted: 2007-07-01 22:13

On 2005 September 13 a filament eruption accompanied by a halo CME occurred in the most flare-productive active region NOAA 10808 in Solar Cycle 23. Using multi-wavelength observations before the filament eruption on Sep. 13th, we investigate the processes leading to the catastrophic eruption. We find that the filament slowly ascended at a speed of 0.1km s-1 over two days before the eruption. During slow ascending, many small flares were observed close to the footpoints of the filament, where new magnetic elements were emerging. On the basis of the observational facts we discuss the triggering mechanism leading to the filament eruption. We suggest the process toward the eruption as follows: First, a series of small flares played a role in changing the topology of the loops overlying the filament. Second, the small flares gradually changed the equilibrium state of the filament and caused the filament to ascend slowly over two days. Finally, a C2.9 flare that occurred when the filament was close to the critical point for loss of equilibrium directly led to the catastrophic filament eruption right after itself.

Authors: Kaori Nagashima, Hiroaki Isobe, Takaaki Yokoyama, Takako T. Ishii, Takenori J. Okamoto, and Kazunari Shibata
Projects: TRACE

Publication Status: ApJ (in press), astro-ph/0706.3519
Last Modified: 2007-07-08 23:25
Go to main E-Print page  Solar Flare Electron Spectra at the Sun and near the Earth  Automatic Active-Region Identification and Azimuth Disambiguation of the SOLIS/VSM Full-Disk Vector Magnetograms  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University