E-Print Archive

There are 4451 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Additional acceleration of solar-wind particles in current sheets of the heliosphere View all abstracts by submitter

Valentina Zharkova   Submitted: 2015-04-21 07:22

Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS) or in a front of interplanetary coronal mass ejections (ICMEs) often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons) measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC) simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012). The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR), which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS) are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic suprathermal electrons) at the leading edge of ICMEs as energetic electrons generated during a magnetic reconnection at the ICME-front current sheet.

Authors: Zharkova V.V. and Khabarova O.
Projects: None

Publication Status: Ann. Geophys., 33, 457-470, 2015, published
Last Modified: 2015-04-21 10:46
Go to main E-Print page  Analysis of a Coronal Mass Ejection and a Co-rotating Interaction Region as they travel from the Sun, passing Venus, Earth, Mars and Saturn  Why Is the Great Solar Active Region 12192 Flare-Rich But CME-Poor?  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University