E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Active Region Coronal Rain Event Observed by the Fast Imaging Solar Spectrograph on the NST View all abstracts by submitter

Kwan Ahn   Submitted: 2015-05-04 18:10

The Fast Imaging Solar Spectrograph (FISS) is being operated on the New Solar Telescope of the Big Bear Solar Observatory. It simultaneously records spectra of Hα and Ca ii 8542 Å lines, and this dual-spectra measurement provides an estimate of the temperature and nonthermal speed components. We observed a loop structure in AR 11305 using the FISS, SDO/AIA, and STEREO/EUVI in 304 Å , and found plasma material falling along the loop from a coronal height into the umbra of a sunspot, which accelerated up to 80 km s-1. We also observed C2 and C7 flare events near the loop. The temperature of the downflows was in the range of 10 000 - 33 000 K, increasing toward the umbra. The temperature of the flow varied with time, and the temperature near the footpoint rose immediately after the C7 flare, but the temperature toward the umbra remained the same. There seemed to be a temporal correlation between the amount of downflow material and the observed C-class flares. The downflows decreased gradually soon after the flares and then increased after a few hours. These high-speed red-shift events occurred continuously during the observations. The flows observed on-disk in Hα and Ca ii 8542 Å appeared as fragmented, fuzzy condensed material falling from the coronal heights when seen off-limb with STEREO/EUVI at 304 Å . Based on these observations, we propose that these flows were an on-disk signature of coronal rain.

Authors: Ahn, Kwangsu; Chae, Jongchul; Cho, Kyung-Suk; Song, Donguk; Yang, Heesu; Goode, Philip R.; Cao, Wenda; Park, Hyungmin; Nah, Jakyung; Jang, Bi-Ho; Park, Young-Deuk
Projects: None

Publication Status: published to Solar Physics
Last Modified: 2015-05-06 10:09
Go to main E-Print page  Predicting the Arrival Time of Coronal Mass Ejections with the Graduated Cylindrical Shell and Drag Force Model  On flare predictability based on sunspot group evolution  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University