E-Print Archive

There are 4053 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Model comparison for the density structure along solar prominence threads View all abstracts by submitter

Inigo Arregui   Submitted: 2015-05-14 03:52

Quiescent solar prominence fine structures are typically modelled as density enhancements, called threads, which occupy a fraction of a longer magnetic flux tube. The profile of the mass density along the magnetic field is however unknown and several arbitrary alternatives are employed in prominence wave studies. We present a comparison of theoretical models for the field-aligned density along prominence fine structures. We consider Lorentzian, Gaussian, and parabolic profiles. We compare their theoretical predictions for the period ratio between the fundamental transverse kink mode and the first overtone to obtain estimates for the ratio of densities between the central part of the tube and its foot-points and to assess which one would better explain observed period ratio data. Bayesian parameter inference and model comparison techniques are developed and applied. Parameter inference requires the computation of the posterior distribution for the density gradient parameter conditional on the observable period ratio. Model comparison involves the computation of the marginal likelihood as a function of the period ratio to obtain the plausibility of each density model and the computation of Bayes Factors to quantify the relative evidence for each model, given a period ratio observation. A Lorentzian density profile, with plasma density concentrated around the centre of the tube seems to offer the most plausible inversion result. A Gaussian profile would require unrealistically large values of the density gradient parameter and a parabolic density distribution does not enable us to obtain well constrained posterior probability distributions. However, our model comparison results indicate that the evidence points to the Gaussian and parabolic profiles for period ratios in between 2 and 3, while the Lorentzian profile is preferred for larger period ratio values.

Authors: I. Arregui & R. Soler
Projects: None

Publication Status: A&A, accepted
Last Modified: 2015-05-14 14:49
Go to main E-Print page  Forward Modelling of standing slow modes of flaring coronal loops  The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University